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ABSTRACT 3 3 2—? (
An important class of methods for approximating solutions of
non-linear systems of equations are the Gauss-Seidel or relaxation
processes. The problem of obtaining asymptotic rates of conver-
gence of these methods is treated here by linearization about a
solution of the system. This leads to the study of the asymptotic
behavior of solutions of perturbed linear difference equations and
estimates for the decay rate of such solutions are obtained. These
results are then applied to more general difference equations and,
in particular, to the difference equations of typical Gauss-Seidel
processes. This gives a precise determination of the asymptotic
rate of convergence of these processes and is a generalization of
known results for linear systems of equations. Application is
made to a particular class of non-linear systems arising from mildly
non-linear elliptic boundary value problems. In particular, esti-
mates are given for optimum overrelaxation parameters and the results

Aw\/\/\c’fk

of numerical experiments are presented.



Non-linear Difference Equations and

Gauss-Seidel Type Iterative Methods

By James M. Ortega and Maxine L. Rockoff

1l. Introduction

Several authors ([1]-[7]) have recently considered Gauss-
Seidel type iterative processes (i.e. relaxation processes) for

the approximation of solutions of a system of non-linear equations:
(1.1) f(x) =0 (fi(xl""'xn) = 0, i=l,...,n).

No discussion of the asymptotic rate of convergence of these pro-
cesses has yet been given, however, and the purpose of this paper
is to set forth a generalization of the linear theory as described,
for example, in [8] and [9].

If x* is a solution of (1.1) and

(k+1) (k)
X

(1.2) = h(x ), k=0,1,...

is an iterative process such that x* = h(x*), then expansion of h
about x* leads to the error equation:

JOeHL) () (k)

(1.3) He + r(e ). k=0,1,...

’

where H = h'(x*) is the Jacobian matrix of h at x* and

e(k) = x(k) - x*, In Section 2 we study the perturbed linear dif-

(0)

ference equation (1.3) under various assumptions on H, r and e .

In particular, we obtain estimates of the form



k

(1.4) | = elex ' k=1,2,..., 0 < x < 1,

Po
where K is a fixed integer, BO and Bl are constants depending on
e(o), and A = p(H) is the spectral radius of H. These estimates
are related to gualitative results of Panov [10] and may be of
interest in themselves.

The iterative processes with which we are concerned are not
naturally of the form (l1.2); rather the iterates satisfy a more

general difference equation

(1.5) gx®) KNy _ 5 xo0,1,...

(k+1) (k)

where g may be non-linear in X as well as x . In Section
3, we obtain results on the asymptotic behavior of solutions of
(1.5) by means of the implicit function theorem together with our
previous results for (1.3). Then, in Section 4, we consider some
typical relaxation processes as applied to (l.1) and, under suit-
able assumptions on £ and hence g, we conclude that the asymptotic
rate of convergence is given by =ln[p(H)]. Here H is the matrix
[gx]—lgy evaluated at (x*,x*) and 9, and gy are the partial Frechet
derivatives (Jacobian matrices) of g with respect to the first and
second vector variables. This generalizes the corresponding result
of the linear theory.

Finally, in Section 5, we treat a particular class of non-

linear systems that arise, for example, as discrete analogues of

certain mildly non-linear elliptic boundary value problems. Here



we are able to make useful a priori comparisons between different

iterative processes and, moreover, obtain estimates for optimum

over-relaxation parameters. Some numerical experiments supporting

the theory are also included.



2. Pertrubed Linear Difference Equations

The following result is related to a theorem of Ostrowski

(11, p. 119] on points of attraction.

Theorem l: Suppose H is an nxn matrix with spectral radius

p (H)=A<1l and let r:QCRn—'Rn denote a mapping of an open neighbor-~

o . 1
hood QO of the origin of Rn into Rn such that

(2.1) =Gl o, x| - o.
By

Then, given any constant § with A<A+6<l, there are an open neigh-~

borhood Q' of the origin and a constant d such that for any initial

o) ... (k)

vector e a solution {e } of the difference equation (1.3)

exists and satisfies

(2.2) e ™y = a+e)¥1e®y,  x=0,1... .
Proof: Let (see, e.g., [12, p.46]) || ||' be a norm such that

NHI|' = A + 6/2.

n
Then there are positive constants ¢y and c, such that for all x€R

1A

(2.3) cplixll' = x| = < lix| ",

and, by (2.1), there exists a ¢>0 so that

lThroughout the paper | || denotes an arbitrary vector norm as well
as the corresponding operator (lub) norm.



(2.4) lr(x)] = fﬁHxH, x| =6, a-= c,/cy .

Now let Q' = {x | |lx||' < o/cz}. Then x€Q' implies |x||sc and,

by (2.3) and (2.4),

e = L flxx)| = 8 lx|| = s)lx|l', =xe€aq';
Cl 2Cld 2
hence
le ™1 = e e+ e = Gy 1Oy, @ e
Therefore e(l) € Q' and, by induction, it follows that e(k) €EQ',

k=2,3,..., and

1™ = o+ Oy, k=1,2,... .

Then (2.2) follows using (2.3) and the proof is complete.

Corollary: Let H and r satisfy the conditions of Theorem 1 and

let {e(k)} be any solution of (1.3) such that e(k)»o as k-x. Then
1
(2.5) lim sup e ¥ )¥ = o (@).
e 1
Proof: Since e(k -0, y = lim sup He(k)Hk exists and y=l. Suppose

v>A=p (H). Let 6=(y-\A)/2 and let Q' be the neighborhood given by

Theorem 1 for this §. Then there exists an index ko such that

e(ko) (k)

€ Q' and, by Theorem 1, the sequence f{e | k = ko,ko+l,...}
satisfies (2.2). Hence
1 1
. k) k
v = lim sup He(k)Hk = lim sup || e! )H
k- k z kg
1
k
= lim sup [a(+6)¥ (O3 =1 + 5 <y,
k zk

(@)



which is a contradiction.
Under additional assumptions on r we are able to sharpen the

estimate (2.2).

Theorem 2: Suppose that O0<A=p(H)<1l and r satisfies

Hl+e:

(2.6) lr(x)] = clx , e > 0, 0 < ¢c < o, X € Q.

Let K+l be the dimension of the largest Jordan block of H associated

(k)

with an eigenvalue of modulus A. Then for any solution {e 1 of

(1.3) such that e(k)

(2.7) ey = pf%,  x=1,2,... .

(k)

Moreover, there exists a solution {e(k)} of (1.3) with e -0 as

k-», and a constant Bo>0 such that

BOkK)\k, k=0,l,ooo .

1
Proof: Choose vy such that ke<y<l, set 8§=(\y)lte-2>0 and let Q' be

V)

(2.8) le |

. . k .
the neighborhood given by Theorem 1 for this §. Then if {e( )} is

any solution of (1.3) such that e(k)

(k)

-0 as k—-=, there is a ko for

which e € Q', kzko. Consequently, we may assume, without loss of

generality, that e(k)E Q', k=0,1,... .

(k)} is a solution of (l1.3), we have
k-1

(2.9) e(k) = er(O) + E:er(e(k—j—l))Eer(o) + u(k), k=1,2,...

=0

Since {e

-0 as k-, there exists a constant B such that



Moreover, from (2.2), (2.6), and the definition of §, it

follows that

k k 0),,1+ k
e = clatuse)® el = a1 e (OVyte, xmo,a,
l+e . '
where do = cd . Therefore, since there exists a constant q,
l=g<w, such that
. 4 .
la?|) = a3 a?,  §=1,2,...

(see, e.g., [12, p. 183]), we obtain the estimate

k-1
k ' k-j-1
(2.10) s Y ) ™Iy
3=0
< qdoue(0)”l+eE}Jijk-j—lYk—j—l
= kKK Oyt xa1,...
where
(2.11) b= qdo(l-y)'lx'l.
Hence

1A

1%y = ) e ) + ™y = A Ba | O 4wl O ke,

and this establishes (2.7).
Now let A be an eigenvalue of H of modulus A with which there
is associated a Jordan block of dimension K+l1. Then there exists

a principal vector v, with |lv|]| = 1, and an eigenvector v, such that

(2.12) x;kk'Kﬁkv~vo #0, koo

(0)

Choose e' ’'=0vc Q' where o satisfies 0 < po° = %HVOH, with u given



. by (2.11). Then, by (2.10), we have

He(k)H = xkkK I xlk k—Ker(o) + ka k_Ku(k)H

v

VRO K] - wlev] T

iv

Ve (T xR - Mlv ), k=0,1,...

and it follows, using (2.12), that for some integer kl’

v

(2.13) e = e v [l ke,

1

But then there exists a BO with 0<BO§(9/4)”VOH such that (2.8)
(ko)

holds. For, otherwise, we would have e

and this would imply e(k)=0 for all kéko.

=0 for some k <k._,
o1l

Corollary: Let H and r satisfy the conditions of Theorem 2 with

the exception that p(H)=0 is not excluded. Then
1

(2.14) sup {lim sup || e(k)Hk} = o (H),
ko

where the supremum is taken over all solutions {e(k)} of (1.3)

(k)

such that e -0 as k-,

Proof: By the corollary to Theorem 1, we have
1
(k)Hk

sup {lim sup || e } = p(H),

k—ow
and if p(H)=0, equality holds in (2.14). If p(H)#0, then the re-

verse inequality follows from (2.8). This completes the proof.
We conjecture that (2.14) holds if r satisfies only (2.1).
‘ However simple examples show that the estimates (2.7) and (2.8)

do not hold even when n = 1.



3. Application to More General Difference Equations

We now apply the results of the previous section to difference
equations of the form (l1.2) and for notational convenience we de-

fine the following class of functions.

s n
Definition l: Let g:Dg c R" x R" = Rn denote a mapping from a
. . n n . n n .
domain Dg in the product space R x R into R°. Suppose S C R is
a non-empty set such that SxS c Dg and let x* be a point in the
closure of S. Then g is defined to belong to the class of functions

(0)

F(s;x*) if for each initial vector x € S, the difference equation

(1.2) has a unique solution {x(k),k=0,l,...} c S which converges

(k)

to x*. Each solution {x } © S of (1.3) will be called a g-se-

quence on S.

We note that if g(x,y)=x-Hy-r(y), where H and r satisfy the
conditions of Theorem 1, then g € F(Q';0) with Q' the neighbor-
hood given by the theorem.

If V is an open set in Dg' we write g € Cl(V) if all 2n2
partial derivatives of the components of g exist and are continuous
on V. If, in addition, all 4n3 second partial derivatives exist
and are continuous on V, we write g € C2(V). Finally, we denote

by I and gy the nxn matrices:

- 091 - 093
gx(x,y) 5—}-{-; (x.y)>. gy(X.y) <a_yj' (x,y)>

. n
Theorem 3: Let S' be an open neighborhood of a point x* € R .
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1 -1, .
Assume that g € C°(S' x S'), g is defined and continuous on
X

S' x 8' and g{(x*,x*) = 0. Define

(3.1) H

-1
- * * * *
[gx(x ' X )] gy(x (X¥*)
and suppose that p(H)=\<l. Then there exists a neighborhood S of

X* such that g € F(S;x*); moreover, each g-sequence on S satisfies
1

[ SR Lo

(3.2) lim sup = .

koo
If, in addition,
(3.3) g € C2(S' x S'),
and \#0, then for each g-sequence {x(k)} on S, there is a constant

B such that
(3.4) Hx(k) - x* || = exkkK, k=1,2,...

where K is defined as in Theorem 2. Moreover there exist a g-se-

(k)

quence {x } on S and constant Bo>0 such that

(3.5) Hx(k) - x* || = BoxkkK, k=1,2,... .

Proof: By the implicit function theorem (see, e.g.,[13, p. 265])
there exist an open neighborhood T of x* and a unique function h
defined on T with the property that (h(y),y)cS' x S' and g(h(y),y) =0
for all y € T; i.e., the equation g(x,y) = 0 has a unique solution

X € 8' for all y € T. Moreover x* = h(x*), h' exists and is con-
tinuous on T and h'(x*) = H.

Therefore, if ST is a neighborhood of x*, then every g-sequence
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. . +1
{x(k)} on S satisfies x(k ) = h(x(k)) and, consequently,
+
(3.6) =) Cpw 2w 2 xey +r ™ - x%), k=0,1,...
where

r(x-x*) = h(x)-h(x*) - H(x-x*).

(k)

Conversely, every sequence X -x* satisfying (3.6) is a g-se-
quence on S. Then, since r satisfies (2.l1) with Q = {x-x* | X€E€TY,
all the conditions of Theorem 1 hold for (3.6). Hence g € F(S;x*)
where, if Q' is the set given by Theorem 1, S = {x | x-x* ¢ Q'}.
Moreover, (3.2) follows immediately from the Corollary to Theorem 1l.
Now if (3.3) is satisfied, it also follows from the implicit
function theorem that h is twice continuously differentiable on T.
Let T' be an open neighborhood of x* such that T' € T. Then the

Taylor remainder theorem implies that the function r of (3.6)

satisfies
2 '
lr (x=x*)|| = c||x-x*||", x € T', c<=.

Hence r satisfies (2.6) with Q = {x | x+x* € T'} and therefore (3.4)
and (3.5) are restatements of the conclusions (2.7) and (2.8) of

Theorem 2.
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' 4. Iterative Processes and Asymptotic Rates of Convergence

The results of the previous sections now permit the determina-
tion of asymptotic rates of convergence of certain iterative pro-
cesses applied to the approximation of solutions of (1.1). The
processes we consider are those whose iterates satisfy a difference
equation of the form (1.2) and while this includes, by definition,
all one step methods, our attention will be focused on relaxation
type processes. The following, whose associated difference equations

are defined by (4.1), (4.2) and (4.3), are typical.

I. The Jacobi-Newton-Process (J-N-P). (See [2] and [6].)

(k+1) (k)| _ 3fji, (k) [ (k+1) (k) (k), _ =
R S S Rt T A

II. The Extrapolatated-Gauss-Seidel-Newton-Process (E-G-S-N-P).
(See [2]1 [31 P. l36]l [4] - [7]')

(k,i) _

(4.2) gy o 21 ) L B, BT e i 0, i=l,....n,
IT,0,i OXj k=0,1, ...
where
(k,i) _ (k+1) (k+1) (k) (k)
X = (xi peee XS T XS ey X ).
III. The non-linear Gauss-Seidel (Liebmann) Process (G-S-P).
(see [17, [3, p. 135] and [7].)
+ k+1 k k .
(4.3) g(x(k+],')x(k))E f.(xl(k l?..., g, ) $+i,...,x( )) =0, i=l,...,n,
IIT,i 1 1 1 n k=0,1,... .

For a more general discussion of these and several related processes,

' including block forms of I, II and III, see [14].
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' Note that in order to carry out the G-S-P, a non-linear equa-
tion in a single variable must be solved for each i and k. Note
also that if f is linear, i.e. f(x) = Ax-b, then I, II and III
reduce to the usual cyclic Jacobi, cyclic Extrapolated Gauss-Seidel
(SOR) and cyclic Gauss-Seidel processes respectively.

Now let g € F(S;x*) (Definition 1) and define the quantity
1

(4.4) @(g:S) = sup {lim sup \\X(k)-X*lli}'

ko
(k)

where the supremum is over all g-sequences {x
(k)

} on S. Since
-x*+0 as k-=, the quantity in brackets in (4.4) always exists
and in bounded by unity. Moreover, an argument using (2.3) easily
shows that o(g;S) is independent of the particular norm. Therefore

o(g:;S) is well~defined and satisfies
(4.5) 0 = ao(g:;s) = 1.

In general, of course, «o(g;S) is dependent on S. However, the case
of greatest interest is when S is a neighborhood of x* and we have

the following result.

Lemma l: Let S and S' be open sets such that x* € SNS' and assume
that g € F(S;x*)NF(S';x*). Then a(g;S) = a(g;S').

(k). . (ko)
Proof: If {x } is a g-sequence on S, then for some ko’ X

(k)

€ sSnS'cs!

and {x | k=k , k +1,...} is a g-sequence on S'. But since
o} o) 1 1
(k)x*Hk = lim sup HX(E)X*Hk

. lim sup HX -
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it follows that o(g;S)=«(g:S'). The reverse inequality follows by
the symmetry of the argument.

It is clear that, without additional conditions on g, it is
impossible to conclude more than (4.5) about the magnitude of «o(g;S).
Suppose, however, that g(x,y) = x-Hy+c, where ¢ is a constant vector
and p(H)<l. Then stated in our terms, a fundamental result in the
theory of iterative processes for systems of linear equations is

that there exists a unique x* € R" such that g € E(Rn;x*), and
n
(4.6) @(g;R") = p(H).
The conclusions of Theorem 3 now provide a generalization of (4.6).

Corollary to Theorem 3: Let g satisfy the conditions of Theorem 3

with the exception of (3.3). Then there exists a neighborhood S

of x*, such that g € F(S;x*) and

(4.7) a(g:8) = p(H),
where H is defined by (3.1). If, in addition, g satisfies (3.3),

then
(4.8) a(g;:;8) = p(H).

Proof: (4.7) follows immediately from (3.2). If p(H)#0, (4.8)
follows from (4.7) and (3.5). If p(H) = 0, then, by (4.7), a(g:S) =0
so that (4.8) holds in any case. This completes the proof.

We onjecture that (4.8) holds without the additional assumption

(3.3); see the remarks following the Corollary to Theorem 2.



i
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When

&

Clearly o(g;S) can be consider;d a measure of the slowest

possible asymptotic convergence of'any g-sequence to x¥*,

applied to general one-step iterative processes, however, o(g;S)
For example, sup-

may give only a minimal amount of information.

pose there exist constants y and pzl such that for all g-sequences

on S
(k-1)
k=o,l' * e o

(4.9)
If p>1 then «(g:;S) = 0; hence a(g;S) provides no basis for the com-
However, our interest

= y and

parison of different “higher order" methods.
= 1. 1In this case, «(g:S)

here is in processes for which p
the determination of w(g;S) may yield a sharper asymptotic conver-

gence measure than the geometric estimate provided by (4.9).

it will be convenient, and consistent with the

In the sequel,
If g € F(S;x*),

linear theory, to adopt the following terminology.

where S is a neighborhood of x*, and (l1.2) is the difference equation

of an iterative process, then we shall define

R(g)= -1In[a(g;:S)]

(4.10)
to be the asymptotic rate of convergence of the process (on S and

hence, by Lemma 1, on any other neighborhood S' of x* for which

g € &(S';x*) ). For example, if 9; is given by (4.1) and 9; € F(S:;x*)
then we say that R(gI) is the asymptotic rate of convergence of

the Jacobi-Newton-Process (or the a.r.c. of the J-N-P, for short.)
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Moreover, if 9; € F(S:;x*) and - € F(s;x*), we say that the J~N-P

is asymptotically faster than the G-S-P if R(gI) > R(gIII) or

asymptotically equivalent if R(gI) = R(gIII). Similar statements

apply for comparison of the other processes.

We now consider the functions gI, g and gIII of (4.1),

II,w
(4.2) and (4.3) in more detail. Assume that the function £ of (1.1)

. . n
satisfies, for some x* € R,

(4.11) f€C3(S'), s' = {x | |xi—x;| < § =+o, i=1l,...n},
and
(4.12) f(x*) = 0.

That is, f is defined and three times continuously differentiable

on an open cube S' and the system f(x) = 0 has a solution x* € S'.
£ . ) . . S

Then the functions 9; gII,w and gIII are defined and twice continu

ously differentiable on S' and S'; furthermore

(4.13) gI(x*,x*) (x*,x*) (x*,x*) = 0.

= 911,0 = 91171

Let the Jacobian matrix f£'(x) be written as

(4.14) f'(x) = D(x) - E(x) - F(x), X € 8',
where D, E and F are diagonal, strictly lower triangular and strictly

upper triangular respectively, and assume that
(4.15) det[D(x)] # O, X € S'.
Then g;l exists and is continuous on S'xS' for each of 91 9114

i , the
and gIII' Moreover, if we denote by HI’ HII,m and HIII
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-1
matri - x*,x*% *, x*) f . -
ces [gx( )] gy(x x*) for 9; and g rqp TeS

gII,w
pectively, then

(4.16) H, = [D(x*) 17 [E(x*) + Flx®)],
(4.17) Hip o = [D(x*) - wE(X*)]-l[(l—w)D(X*) + wF(x*)],
and
(4.18) Hopr = [D0e%) - BtV TRGer) =B .
Now assume that
(4.19) p(HI) <1, p(HII,w) <1, p(HIII) < 1.

Then all of the conditions of Theorem 3 are satisfied for each of
gI, gII,w and 9111’ and the following theorem is simply a restate-

ment, using (4.10), of the conclusions of Theorem 3 and its Corollary.

Theorem 4: Let f satisfy the conditions (4.11), (4.12) and (4.15)

and assume (4.19) holds. Then there exist neighborhoods S S

1’ “2,w

and S3 of x* such that

oy ¥k ek ey R
97 € S(Sl,x ). g € 3(52,w'x ), and g € 3(83,x ).

IT,w III

Moreover,

R(g ) = -lnle(H)], R(gII'w) = -ln[p(HII,w)]:

and

(4.20) R(g___) = -1n[p(H

III

r3r)d = Rl9pp 4)-

Therefore, under the assumptions of Theorem 4, the asymptotic

rates of convergence of the processes I, II and III are determined
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by the spectral radii of the matrices H H and HI res-

I' "IT,w II
pectively; this generalizes the corresponding result in the linear
theory. Of course, to compare these spectral radii and, moreover,
to verify that the conditions (4.19) hold, we need to assume more
about f; this we shall do in the following section. Note, however,
that Theorem 4 already yields one interesting, although perhaps
intuitively obvious, comparison, namely, that under the conditions
of the theorem, the G-S-N-P and the G-S-P are asymptotically
equivalent. (Of course, this says nothing about the global be-
havior of the processes; however, see the numerical experiments

of the next section.)
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5. Applications

The conditions imposed upon the function f in the previous
section are admittedly stringent; in particular, the verification
of (4.19) requires, in general, that the solution x* of (l1.1l) be
known. However, for certain functions arising in practice it may
be quite simple to ascertain that all of these conditions are ful-
filled and to make useful a priori comparisons of different itera-
tive processes. In this section we continue the analysis of g

and g for a particular class of equations f(x) = 0 which

911, 0 III

arise, for example, as the discrete analogues of certain mildly
non-linear elliptic boundary value problems of the type Au = o (u)
(see, e.g., [4]). The development is based upon the corresponding
theory for linear problems as described, for example, in Forsythe
and Wasow [8] and Varga [9] and we refer to these references for
definitions of the terminology used here.

Consider the system of equations

(5.1) f(x) = Ax + @g(x) = 0,

and assume that

(5.2) A is irreducibly diagonally dominant,
and
(5.3) A=D-E-F, D=zO0, E+F=z0O0,

where D, E, and F are diagonal, strictly lower triangular and

strictly upper triangular respectively. About the non-linear
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function @, we assume that each component ﬂi is a function of a

single variable and that

(5.4) g,(x) = £ (x), i=l,...,n,
(5'5) gi € C3(—°°,+eo), i=ll°"lnl
and

(5.6) ﬁi(t) z 0, -o<t<ew, i=l,...,n.

Under these hypotheses it may be shown that (5.1) has a
unique solution x*. (See, e.g., [4], or for symmetric a, [71]).
Moreover, it is easily verified that (4.11) holds with S' = rR".
Furthermore, f'(x) =D + #'(x) - E - F where, by (5.4) and (5.6),
@' (x) is a non-negative diagonal matrix. Hence using (5.2) and
(5.3), (4.15) holds and, in order to apply Theorem 4, it remains
to examine the spectral radii of the matrices HI and HII,w of

(4.16) and (4.17).

For notational convenience we define

(5.7) H_(2) = zLE +F),
and
- -1 _
(5.8) HII,w(Z) = (2~wE) [ (l-w)z +wF],

for all non-singular diagonal matrices Z. Then HI = HI(D + @' (x*))

and H =H w(D + @' (x*)) while HI(D) and HI

(D) are the
II,w 1T, w

I,

Jacobi and SOR matrices for the linear problem

(5.9) Ax = 0.
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Now for any diagonal matrix D, = D we observe directly from

1

(5.7) and (5.8), using (5.3), that

0 = HI

and

0

1A

HII,w(Dl)

Hence, by (5.2) and the

(5.10)

and

lA

(5.11) olH ]

II,w

where equality holds in

(Dl) = HI(D), Dl z D

= HII,w(D)' Dl z D,

Perron-Frobenius theory, we conclude that

plH T = p[H (D)] < 1,

0 < w

1A

pLH L (D] < 1, 1,

I

(5.10) and (5.11) if and only if @'(x*) = 0.

Moreover, by the Stein-Rosenberg Theorem (see [9, p. 68]),

(5.12) 0
Finally it can be shown

(5.13) p (H )

II,(D2

< p(H ).

< p(HII l) < p(HI)-
that (see [9, p. 921)

II,wl 0 < wq < w2 = 1.

Now, using (5.10) and (5.11), Theorem 4 may be applied and

our conclusions thus far may be summarized as follows.

tion I1+ O< o =

911, 0"

Each func-

1, and 9111 is contained in F(S';x¥*)

where S' is some neighborhood depending on the particular process.

(Actually, under additional assumptions on @ or A, much more is

known about the global convergence properties of the Gauss-Seidel

and Gauss-Seidel-~Newton

processes. See [4] and [7]). By (5.10),
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the asymptotic rate of convergence (a. r. c.) of the Jacobi-Newton
process for (5.1) is not less than that of the Jacobi process for
(5.9); and is greater if @'(x*)#0. Likewise, by (5.11), the a. r. c.
of the G-S-N-P and (since, HIII = HII,l) the a. r. c¢. of the G~S-P
for (5.1) are equal and are not less than that of the G-S-P for
(5.9). Moreover, by (5.12), the a. r. c. of the G-S-N-P for (5.1)

is greater than that of the J-N-P for (5.1). Finally, by (5.13),
the a. r. c. of the E-G-S-N-P is a monotonically increasing func-
tion of w for w=l. Hence, under the conditions imposed on £, the

only reason that could be advanced for under relaxing the E-G-S-N-P,

is to improve the global convergence.

5.2 We now consider 911 for w>1 and in addition to the assump-

tions already made about (5.1) we add the following:

(5.14) A is 2-cyclic and consistently ordered,

(5.15) A is symmetric.

We can then apply all of the theory first developed by Young [15]
for the point successive overrelaxation of linear problems.

We first note that if Z is any diagonal matrix, (5.14) implies
that Z - E - F is again 2-cyclic and consistently ordered. Now

let

v

(5.16) Z z D.

Then HI(Z) exists and, by (5.15), is similar to a symmetric matrix;
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hence HI(Z) has real eigenvalues. Furthermore the fundamental

relationship
(5.17) [v(2) + o -11° = v(2) 0 [u(z)]?

holds between the eigenvalues p(2) of HI(Z) and the eigenvalues

v(Z) of HII,w(Z)' Thus if wopt(z) denotes that value of & which

minimizes p[HI UJ(Z)], then it follows from (5.17) that

I,
2

(5.18)
L+ {1 - 2[H(2)]})%

wopt(z) -

(5.19) olHy (2)1= klwplH (2)1+ (*p (H (2)1- 4(w -1)) %2, O<usu

opt’

and

.20 = -— = < .
(5.20) p[HII,w(Z)] w=1, Copt = O = 2

Now let Dl be a diagonal matrix such that

(5.21) D + @' (x*) = Dl.
Then
(5.22) p[H_(D;)] = o[H ] = p[H_(D)],
and, using (5.18) through (5.22), the spectral radii of HII w(Dl)’
HII,w and HII,w(D) are related as shown in Diagram A.

These results can be summarized as follows. Under the as-

sumptions (5.1) through (5.6), (5.14) and (5.15), applied

gII,w
to (5.1) for any 0 < w < 2 satisfies the conditions of Theorem 4;

hence for each 0 < w < 2, there is a neighborhood Sw such that

911 € F(S ;x*). Moreover, there exists an optimum w, such that
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5.23) R > ' = !
( ) (gII'wopt) R(gII,m) O<w<2, w%mopt wopt(D + B'(x*)),

and, for the matrix D, of (5.21), w satisfies

1 opt

(5.24) (D.) = o = w (D).

UL)opt 1 opt opt

Finally,

R(gII,w) z _ln{p[HII,w(D)]}' 0 < w< 2;

that is, the a. r. c. of the E-G-S-N-P is at least as great when

the process is applied to (5.1) as when it is applied to (5.9).

5.3 Along with the E-G-S-N-P there is, of course, an extrapolated
non-linear Gauss-Seidel-Process (E-G-S-P) whose iterates satisfy

the difference equation:

(k) (k)

Jox. 3, eee X }=0,i=1,...,n.
+
+ i+l n k=0,1, ...

(5.25) fi(x(k+l) (k+l)x(k)_w-l[x§k+l)_xfk)

e R

In the previous section we showed that the asymptotic rates of con-
vergence of the E-G-S-P and the E-G-S-N-P were the same if w = 1.

In an analogous way it may be shown that they are the same for all
w; hence the conclusions of this section for the E-G-S-N-P apply
verbatim to the E-G-S-P.

5.4 In Table I we summarize the results of some numerical experi-
ments in which the E~G-S-N-P and the E-G-S-P were applied to discrete
analogues of the following boundary value problems (the domain of
each problem is 0 = [0,1] x[0,1] and  is the boundary of Q):

ex; x(s,t) = s + 2t, (s,t) € Q

a) Ax
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b) Ax = x7; x(s,t) = s + 2t, (s,t) € Q

3 [ d
c) AX = X ; x(s,t) =0 . (s,t) € O
d) ax =0, x(s,t) =0 . (s,t) €Q

Experiments involving problem a) have been reported in [4].
In each case, the Laplacian operator was approximated by using
the usual 5-point formula with h = .05. This gives for each problem

a system of 361 equations of the form:

2
- - 0 - . L] - . . - . . - L3 . + . . =
(5.26) 4x1,] Xl,]-l X1,3+1 Xl—l,j x1+l,J h G(Xl,j) o,
. -1
llj = l,oo.,N--L,N=h 1
x 3 3 .
where o(x) = e ,x ,x” and 0 for a), b), c¢), and d) respectively

and the ordering of the grid points is left to right, bottom to top.
It is easy to verify that each of the systems (5.26) satisfies the
conditions (5.1)-(5.6), (5.14) and (5.15):; hence the theory of this
section applies.

Clearly c) and d) have the unique solutions x = 0 and the same

is true of their discrete analogues (5.26). Therefore, g'(x*)

I
o

and the optimum ¢ for the E-G-S-N-P and E-G-S-P applied to c)
is the same as that for the linear problem d). Using (5.18) and
the known eigenvalues of the corresponding Jacobi matrix, it may

be computed exactly:

(5.27) =1.73.

u)opt, c,d.

By (5.24), (5.27) also gives an upper bound for wopt,a and wopt,b'
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In fact, after approximate solutions of (5.26) were obtained, we
computed

= 1.705, wopt,b = 1.701

wopt,a
by approximating the spectral radii of the corresponding Jacobi
matrices H (D + #'(x*)).

We used starting approximations determined as follows:

1. The boundary conditions were linearly interpolated at each
grid point.
2. A function value of 50 was taken at each grid point.

For problems c¢) and d) only 2,is applicable.

In Table I we tabulate the number of iterations and seconds
of machine time required to satisfy a convergence test of
Hx(k+l) - x(k)Hwé 107®. All calculations were done on an IBM-7094-
II. The machine time includes a certain amount of printing and does
not reflect an optimal program; however, it is the relative times
that are of interest.

The E-G-S-P was carried out by first solving the individual
equations of (5.26) by Newton's method (with a convergence criterion
of lO_6 for the residual) and then extrapolating.

Table I shows that the use of the theoretical optimum w produces

the fastest convergence in most cases; this tends to substantiate

the theory. However it is clear that the use of the optimum

Ite

w(= 1.73) for the linear problem is almost as good. Perhaps the
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most interesting fact is that the E-G-S-P and the E-G-S-N-P tend
to take almost exactly the same number of iterations. Our theory

predicts that asymptotically this is true but, of course, does not

indicate that this should be true globally. Note, however, that
for the problem a)2, the E-G-S-N-P took significantly more
iterations than the E-G-S-P. This was due to the poor starting ap-
proximation and the resulting magnitude of e50. In any case the
E-G-S-N-P was always 1% to 2 times as fast as the E-G-S-P.

We also ran all of the test problems for w = l; convergence
was never achieved before the program was stopped after 300 itera-
tions. Finally, we run numerous problems for h = .1 (8l equations)

but there was no qualitative difference in the results.
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w
Problem 1.57 1.63 l.68 1.705 1.73 1.80
a)l EGS 92/37 77/31} 61/25 50/21 48/19 62/24
' EGSN 92/22 77/19| 61/15 50/13 48/12 62/15
a)2 EGS 133/65 | 111/56| 88/46 73/40 70/38 88/47
EGSN| 138/33 | 118/29 97/23 82/20 82/20 |105/25
b)1l EGS 85/27 71/23] 56/18 46/15 46/15 62/23
EGSN 85/17 71/14| 56/11 46/9 46/9 62/12
b)2 EGS 88/30 88/30| 74/26 63/23 67/24 89/32
EGSN| 106/20 87/17{ 65/13 55/11 62/12 83/16
c)2 EGS 130/49 90/35| 89/34 79/28 69/24 88/33
EGSN| 138/27 | 114/22| 91/18 80/14 62/12 82/16
d)2 EGS 157/22 {133/18{107/15 94/13 72/10 87/12
Table 1. ‘(iterations/seconds)
E z;HII,w(D)]
? plHp ,(Py)]
p[HII'w]
{
!
i
L‘,_.nA e et e - — DR —— - — -
1 5 2
Diagram A
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